On Open Boundaries in the Finite Element Approximation of Two-dimensional Advection-diffusion Flows

نویسنده

  • FRANCISCO PADILLA
چکیده

A steady-state and transient finite element model has been developed to approximate, with simple triangular elements, the two-dimensional advection—diffusion equation for practical river surface flow simulations. Essentially, the space—time Crank—Nicolson—Galerkin formulation scheme was used to solve for a given conservative flow-field. Several kinds of point sources and boundary conditions, namely Cauchy and Open, were theoretically and numerically analysed. Steady-state and transient numerical tests investigated the accuracy of boundary conditions on inflow, noflow and outflow boundaries where diffusion is important (diffusive boundaries). With the proper choice of boundary conditions, the steady-state Galerkin and the transient Crank—Nicolson—Galerkin finite element schemes gave stable and precise results for advectiondominated transport problems. Comparisons indicated that the present approach can give equivalent or more precise results than other streamline upwind and high-order time-stepping schemes. Diffusive boundaries can be treated with Cauchy conditions when the flow enters the domain (inflow), and with Open conditions when the flow leaves the domain (outflow), or when it is parallel to the boundary (noflow). Although systems with mainly diffusive noflow boundaries may still be solved precisely with Open conditions, they are more susceptible to be influenced by other numerical sources of error. Moreover, the treatment of open boundaries greatly increases the possibilities of correctly modelling restricted domains of actual and numerical interest. ( 1997 by John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

Finite Element Computation of KPP Front Speeds in Cellular and Cat's Eye Flows

We compute the front speeds of the Kolmogorov-Petrovsky-Piskunov (KPP) reactive fronts in two prototypes of periodic incompressible flows (the cellular flows and the cat’s eye flows). The computation is based on adaptive streamline diffusion methods for the advection-diffusion type principal eigenvalue problem associated with the KPP front speeds. In the large amplitude regime, internal layers ...

متن کامل

An Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements

In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...

متن کامل

Modelling the catalyst fragmentation pattern in relation to molecular properties and particle overheating in olefin polymerization

A two-dimensional single particle finite element model was used to examine the effects of particle fragmental pattern on the average molecular weights, polymerization rate and particle overheating in heterogeneous Ziegler-Natta olefin polymerization. A two-site catalyst kinetic mechanism was employed together with a dynamic two-dimensional molecular species in diffusion-reaction equation. The i...

متن کامل

Finite Element Simulation and ANFIS Prediction of Dimensional Error Effect on distribution of BPP/GDL Contact Pressure in PEM Fuel Cell

Distribution of contact pressure between the bipolar plate and gas diffusion layer considerably affect the performance of proton exchange membrane fuel cell. In this regard, an adaptive neuro-fuzzy inference system (ANFIS) is developed to predict the contact pressure distribution on the gas diffusion layer due to dimensional errors of the bipolar plate ribs in a proton exchange membrane fuel ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997